Effect of pulsed electromagnetic field therapy on the osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells.
نویسندگان
چکیده
We investigated the effects of pulsed electromagnetic fields (PEMFs) of 20 Hz/2 mT on the osteogenic and adipogenic differentiation of bone marrow stem cells (BMSCs). Sprague Dawley rat BMSCs were isolated and cultured in vitro. The BMSCs of the third passage were obtained and stimulated by PEMFs of 20 Hz/2 mT. The alkaline phosphatase (ALP) activity was measured according to the ALP assay kit manufacturer instructions, the BMSC osteogenic and adipogenic indicators were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and oil red O staining was used to observe the adipose-induced adipogenic differentiation of BMSCs. PEMFs of 20 Hz/2 mT significantly promoted the activity of ALP in the BMSCs (P < 0.01) and mRNA expression of osteogenic proteins (osteocalcin and osteopontin). The PEMFs inhibited the expression of adipogenic transcription factors such as adipokines and adipocyte-binding protein-2, and the adipogenic differentiation of BMSCs. PEMFs of 20 Hz/2 mT can promote osteogenic differentiation and inhibit adipogenic differentiation in BMSCs.
منابع مشابه
Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow
Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...
متن کاملEquine Bone Marrow Derived Mesenchymal Stem Cells: Isolation and Multilineage Differentiation
Objective- To evaluate growth characteristics and differentiation capacity of equine mesenchymal stem cell (eMSCs) derived from bone marrow (BM). Study design- In vitro experimental study. Animals- Four young adult horses (2-5 years old) Procedure- Cell morphology and growth characteristics of eMSCs harvested from BM were evaluated in standard culture conditions. eMSCs in passage 3 were subj...
متن کاملThe osteogenic differentiation stimulating activity of Sea cucumber methanolic crude extraction on rat bone marrow mesenchymal stem cells
Objective(s):Sea cucumber derived bioactive compound is considered efficient in treatment of bone disorders. This study was performed to evaluate the effect of this extract on differentiation of rat bone marrow mesenchymal stem cells (rBMMSc) into osteogenic lineage. Materials and Methods: Isolated rBMMSc were grown in DMEM supplemented with 10% FBS. The cells were exposed to different concen...
متن کاملOsteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملDifferentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells
Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2015